StopUMTS Logo
how to get rid of moles 
Zoeken
   
Voorlichting
02/07/18Informatie en tips m.b.t.
28/06/18Frequenties gebruikt bij
Artikelen
16/07/18Firefighters Suffer Neuro
16/07/18With teen mental health d
16/07/18The inconvenient truth ab
07/07/18'Wifi op speelplaatsen on
30/06/18Countries ban iPads and m
22/06/18SAR waarden, Phones emitt
Berichten Nederland
13/07/18Zelfs VodafoneZiggo-ceo m
10/07/18Update Gemeente Heusden -
09/07/18Ziek door straling: slach
06/07/18Nederlandse providers moe
05/07/18De Omgevingswet en elektr
Berichten België
16/06/18Scherpenheuvel-Zichem: Be
14/06/18Tommelein laat straling d
Berichten Internationaal
11/07/18USA: Berkeley Cell Phone
29/06/18Frankrijk: Appeal for the
28/06/18Ierland: Proposed legisla
27/06/18Frankrijk: Hypersensitivi
Ervaringen | Appellen/oproepen
03/07/18Slimme meter ervaring
28/05/18Stralingsarme werkplek
28/05/18Ervaring in Denemarken
Onderzoeken
12/07/185 G wireless telecommunic
30/06/18Nervous system manipulati
21/06/18Absorption of wireless ra
Veel gestelde vragen
13/05/17Vakantie? Witte zo
10/07/16Zeven veel gestelde vrage
Juridische informatie
01/06/18Wetgeving hoogspanningsli
15/05/18Brit dad sues Nokia for u
02/03/18Formal Complaint to the E
Oproepen
29/06/18Tegenlicht wordt 30% geko
15/06/18Stem voor plan voor een w
24/05/18Lezing in Westerhoven: Sm
Folders
10/09/17Brochures, folders, websi
29/04/16USA: Meer dan 50 tips voo
Briefwisselingen | Archief: 2008, 2005
07/07/18E/mail naar alle raadsled
07/07/18E-mail naar de TV redacti
Illustraties
 Algemeen
 Fotoalbum zendmasten
 Wetenschappelijke illustraties
Korea: Effrecten van LF EMV op stam cellen in beenmerg    
Ga naar overzicht berichten in: Onderzoeken

Korea: Effrecten van LF EMV op stam cellen in beenmerg
donderdag, 05 december 2013 - Dossier: Algemeen


Bron: www.ncbi.nlm.nih.gov/pubmed/23970408?dopt=Abstract .
1 aug. 2013


Exp Biol Med (Maywood). 2013 Aug 1;238(8):923-31.

Extremely low-frequency electromagnetic fields induce neural differentiation in bone marrow derived mesenchymal stem cells.

Kim HJ, Jung J, Park JH, Kim JH, Ko KN, Kim CW.

School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea.

Abstract
Extremely low-frequency electromagnetic fields (ELF-EMF) affect numerous biological functions such as gene expression, cell fate determination and even cell differentiation. To investigate the correlation between ELF-EMF exposure and differentiation, bone marrow derived mesenchymal stem cells (BM-MSCs) were subjected to a 50-Hz electromagnetic field during in vitro expansion. The influence of ELF-EMF on BM-MSCs was analysed by a range of different analytical methods to understand its role in the enhancement of neural differentiation. ELF-EMF exposure significantly decreased the rate of proliferation, which in turn caused an increase in neuronal differentiation. The ELF-EMF-treated cells showed increased levels of neuronal differentiation marker (MAP2), while early neuronal marker (Nestin) was down-regulated. In addition, eight differentially expressed proteins were detected in two-dimensional electrophoresis maps, and were identified using ESI-Q-TOF LC/MS/MS. Among them, ferritin light chain, thioredoxin-dependent peroxide reductase, and tubulin β-6 chain were up-regulated in the ELF-EMF-stimulated group. Ferritin and thioredoxin-dependent peroxide reductase are involved in a wide variety of functions, including Ca(2+) regulation, which is a critical component of neurodegeneration. We also observed that the intracellular Ca(2+) content was significantly elevated after ELF-EMF exposure, which strengthens the modulatory role of ferritin and thioredoxin-dependent peroxide reductase, during differentiation. Notably, western blot analysis indicated significantly increased expression of the ferritin light chain in the ELF-EMF-stimulated group (0.60 vs. 1.08; P < 0.01). These proteins may help understand the effect of ELF-EMF stimulation on BM-MSCs during neural differentiation and its potential use as a clinically therapeutic option for treating neurodegenerative diseases.

KEYWORDS:
BM-MSCs, Ca2+ regulation, Extremely low-frequency electromagnetic fields, ferritin, neural differentiation
PMID: 23970408 (PubMed - in process)


Ga terug naar het hoofdmenu
Afdrukken | Vragen | RSS | Disclaimer