StopUMTS Logo
how to get rid of moles
Zoeken
   
Voorlichting
10/06/17Zonnepanelen: straling va
08/06/17Informatieve voorlichting
Artikelen
23/06/17EU-hof: Vaccin kan ziekte
20/06/17Overleg ECERI en WHO o
20/06/17Here's How Dirty Electric
20/06/17Canadian Study Finds C
20/06/17Smart cities, 5G and EMF
19/06/17WiFi in Schools - The Fac
Berichten Nederland
21/06/17Schippers: 2,5 miljoen eu
20/06/17Cijfers over kanker; Inci
20/06/17Smartphone op school: str
19/06/17Voorschoten: Gemeente kom
15/06/17Epe: Verwarring over zend
Berichten België
30/05/17Kaartlezer verdwijnt, mob
24/05/17Wordt Brussel de eerste s
Berichten Internationaal
11/06/17Engeland: 2 Ripon Childre
09/06/17Phonegate: French Gove
08/06/17Engeland: A Charity Could
05/06/17USA: Sacramento e.a. toek
Ervaringen | Appellen/oproepen
16/06/17GGD ervaring
07/06/17Vrouw zoekt veilige wonin
01/06/17Elana's pantry: ''The Gre
Onderzoeken
02/06/17The Effect of RF Radiatio
27/05/17Diabetis 1: Radiation fro
27/05/17Mobile phone use and risk
Veel gestelde vragen
13/05/17Vakantie? Witte zo
10/07/16Zeven veel gestelde vrage
Juridische informatie
05/06/17Wireless Devices - Minimi
03/06/17Professor Belpomme in
02/06/17Nurse with rare brain dis
Oproepen
12/06/17Lezing in Sommelsdijk (Go
10/06/17Lezing in Nijkerk over vo
19/05/17Lezing Straling en Gezond
Folders
10/04/17Brochures, folders, websi
29/04/16USA: Meer dan 50 tips voo
Briefwisselingen | Archief: 2008, 2005
14/06/17Mail naar 'De Monitor' na
09/06/17Letters From Doctors on W
Illustraties
 Algemeen
 Fotoalbum zendmasten
 Wetenschappelijke illustraties
Evaluation of SAR as a Dosimetric Quantity for Electromagnetic Fields Bioeffects    
Ga naar overzicht berichten in: Onderzoeken

Evaluation of SAR as a Dosimetric Quantity for Electromagnetic Fields Bioeffects
maandag, 13 maart 2017 - Dossier: Algemeen


Bron: journals.plos.org/plosone/article?id=10.1371/journal.pone.0062663
4 juni 2013


Dimitris J. Panagopoulos , Olle Johansson, George L. Carlo

Abstract

Purpose
To evaluate SAR as a dosimetric quantity for EMF bioeffects, and identify ways for increasing the precision in EMF dosimetry and bioactivity assessment.

Methods
We discuss the interaction of man-made electromagnetic waves with biological matter and calculate the energy transferred to a single free ion within a cell. We analyze the physics and biology of SAR and evaluate the methods of its estimation. We discuss the experimentally observed non-linearity between electromagnetic exposure and biological effect.

Results
We find that: a) The energy absorbed by living matter during exposure to environmentally accounted EMFs is normally well below the thermal level. b) All existing methods for SAR estimation, especially those based upon tissue conductivity and internal electric field, have serious deficiencies. c) The only method to estimate SAR without large error is by measuring temperature increases within biological tissue, which normally are negligible for environmental EMF intensities, and thus cannot be measured.

Conclusions
SAR actually refers to thermal effects, while the vast majority of the recorded biological effects from man-made non-ionizing environmental radiation are non-thermal. Even if SAR could be accurately estimated for a whole tissue, organ, or body, the biological/health effect is determined by tiny amounts of energy/power absorbed by specific biomolecules, which cannot be calculated. Moreover, it depends upon field parameters not taken into account in SAR calculation. Thus, SAR should not be used as the primary dosimetric quantity, but used only as a complementary measure, always reporting the estimating method and the corresponding error. Radiation/field intensity along with additional physical parameters (such as frequency, modulation etc) which can be directly and in any case more accurately measured on the surface of biological tissues, should constitute the primary measure for EMF exposures, in spite of similar uncertainty to predict the biological effect due to non-linearity.

Citation: Panagopoulos DJ, Johansson O, Carlo GL (2013) Evaluation of Specific Absorption Rate as a Dosimetric Quantity for Electromagnetic Fields Bioeffects. PLoS ONE 8(6): e62663. doi:10.1371/journal.pone.0062663
Editor: Nils Cordes, Dresden University of Technology, Germany

Received: November 21, 2012; Accepted: March 22, 2013; Published: June 4, 2013

Copyright: © 2013 Panagopoulos et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Zie de link bovenaan voor het volledige artikel en zie verder:
journals.plos.org/plosone/article?id=10.1371/annotation/58c704d9-7cc4-4e4b-873b-214e6e2655ba .


Ga terug naar het hoofdmenu
Afdrukken | Vragen | RSS | Disclaimer